Connecting Data Analytics to Healthcare Knowledge in an IoT environment
In order to build a connected care application, we need to get a good view of the daily activities and lifestyle of the person being monitored at home. Therefore, one of the aims of this project was to collect activity/lifestyle data based on the available sensor data in an ambient house, e.g. sensors for location, movement, light, temperature, the use of certain devices, etc. together with sensors on the monitored people themselves, e.g. wearables or sensors on a smartphone. In addition, sensors are also provided to measure the participants' condition, e.g. blood pressure or weight. The data collection is performed in the IDLab Homelab. In total: 31 "day in life" participants and 12 "night" participants enrolled in this study. More information on all used equipment, mobile applications and Homelab sensors can be found here
All Homelab data samples and performed activities were semantically mapped onto the DAHCC ontology. The Knowledge Graph, for each of the 43 participants, can be found here:
DAHCC KG - 0.65G
user | data | user | data | user | data |
---|---|---|---|---|---|
participant_1 | kg.nt.gzip | participant_15 | kg.nt.gzip | participant_29 | kg.nt.gzip |
participant_2 | kg.nt.gzip | participant_16 | kg.nt.gzip | participant_30 | kg.nt.gzip |
participant_3 | kg.nt.gzip | participant_17 | kg.nt.gzip | participant_31 | kg.nt.gzip |
participant_4 | kg.nt.gzip | participant_18 | kg.nt.gzip | participant_1_night | kg.nt.gzip |
participant_5 | kg.nt.gzip | participant_19 | kg.nt.gzip | participant_2_night | kg.nt.gzip |
participant_6 | kg.nt.gzip | participant_20 | kg.nt.gzip | participant_3_night | kg.nt.gzip |
participant_7 | kg.nt.gzip | participant_21 | kg.nt.gzip | participant_4_night | kg.nt.gzip |
participant_8 | kg.nt.gzip | participant_22 | kg.nt.gzip | participant_5_night | kg.nt.gzip |
participant_9 | kg.nt.gzip | participant_23 | kg.nt.gzip | participant_6_night | kg.nt.gzip |
participant_10 | kg.nt.gzip | participant_24 | kg.nt.gzip | participant_7_night | kg.nt.gzip |
participant_11 | kg.nt.gzip | participant_25 | kg.nt.gzip | participant_8_night | kg.nt.gzip |
participant_12 | kg.nt.gzip | participant_26 | kg.nt.gzip | participant_9_night | kg.nt.gzip |
participant_13 | kg.nt.gzip | participant_27 | kg.nt.gzip | participant_10_night | kg.nt.gzip |
participant_14 | kg.nt.gzip | participant_28 | kg.nt.gzip | participant_11_night | kg.nt.gzip |
participant_16 | kg.nt.gzip | participant_28 | kg.nt.gzip | participant_12_night | kg.nt.gzip |
Full Protego Day Dataset - 22G
Full Protego Night Dataset - 6.5G
user | data | labels | user | data | labels |
---|---|---|---|---|---|
participant_night_1 | data.feather | labels.csv | participant_night_7 | data.feather | labels.csv |
participant_night_2 | data.feather | labels.csv | participant_night_8 | data.feather | labels.csv |
participant_night_3 | data.feather | labels.csv | participant_night_9 | data.feather | labels.csv |
participant_night_4 | data.feather | labels.csv | participant_night_10 | data.feather | labels.csv |
participant_night_5 | data.feather | labels.csv | participant_night_11 | data.feather | labels.csv |
participant_night_6 | data.feather | labels.csv | participant_night_12 | data.feather | labels.csv |